Asymptotics of Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Domains in R

نویسنده

  • PEDRO FREITAS
چکیده

We consider the Laplace operator with Dirichlet boundary conditions on a domain in R and study the effect that performing a scaling in one direction has on the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This generalizes our previous results in two dimensions and, as in that case, allows us to obtain an approximation for Dirichlet eigenvalues for a large class of domains, under very mild assumptions. As an application, we derive a three–term asymptotic expansion for the first eigenvalue of d−dimensional ellipsoids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Spectrum of the Dirichlet Laplacian in a Narrow Strip

We consider the Dirichlet Laplacian ∆ in a family of bounded domains {−a < x < b, 0 < y < h(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We find the two-term asymptotics in → 0 of the eigenvalues and the one-term asymptotics of the corresponding eigenfunctions. The asymptotic formulae obtained involve the eigenvalues and e...

متن کامل

On the Spectrum of the Dirichlet Laplacian in a Narrow Infinite Strip

This is a continuation of the paper [3]. We consider the Dirichlet Laplacian in a family of unbounded domains {x ∈ R, 0 < y < h(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We show that the number of eigenvalues lying below the essential spectrum indefinitely grows as → 0, and find the two-term asymptotics in → 0 of each e...

متن کامل

On the Spectrum of the Dirichlet Laplacian in a Narrow Strip, Ii

This is a continuation of the paper [3]. We consider the Dirichlet Laplacian in a family of unbounded domains {x ∈ R, 0 < y < h(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We show that the number of eigenvalues lying below the essential spectrum indefinitely grows as → 0, and find the twoterm asymptotics in → 0 of each ei...

متن کامل

On the Spectrum of the Dirichlet Laplacian in a Narrow Strip, Ii Leonid Friedlander and Michael Solomyak

This is a continuation of the paper [3]. We consider the Dirichlet Laplacian in a family of unbounded domains {x ∈ R, 0 < y < ǫh(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We show that the number of eigenvalues lying below the essential spectrum indefinitely grows as ǫ → 0, and find the twoterm asymptotics in ǫ → 0 of ea...

متن کامل

Singular Asymptotic Expansions for Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Planar Domains

We consider the Laplace operator with Dirichlet boundary conditions on a planar domain and study the effect that performing a scaling in one direction has on the spectrum. We derive the asymptotic expansion for the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This method allows us, for instance, to obtain an approximation for the first Dirichl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009